Propagation Relations for Solutions of Some Higher Order Cauchy Problems
نویسنده
چکیده
The Huygens' property is exploited to study propagation relations for solutions of certain types of linear higher order Cauchy problems. Motivated by the solution properties of the abstract wave problem, addition formulas are developed for the solution operators of these problems. The application of these alternative forms of the solution operators to data leads to connecting operator relations between distinct solutions of the problems at different times. We examine this solution behaviour for both analytic and abstract Cauchy problems. A basic algorithm for constructing addition formulas for solutions of ordinary differential equations is included.
منابع مشابه
Pulse Propagation Models with Bands of Forbidden Frequencies or Forbidden Wavenumbers: A Consequence of Abandoning the Slowly Varying Envelope Approximation and Taking into Account Higher-Order Dispersion
We study linear and nonlinear pulse propagation models whose linear dispersion relations present bands of forbidden frequencies or forbidden wavenumbers. These bands are due to the interplay between higher-order dispersion and one of the terms (a second-order derivative with respect to the propagation direction) which appears when we abandon the slowly varying envelope approximation. We show th...
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملQualitative Properties and Existence of Solutions for a Generalized Fisher-like Equation
This paper is devoted to the study of an eigenvalue second order differential equation, supplied with homogenous Dirichlet conditions and set on the real line. In the linear case, the equation arises in the study of a reaction-diffusion system involved in disease propagation throughout a given population. Under some relations upon the real parameters and coefficients, we present some existence ...
متن کاملSome new properties of biharmonic heat kernels
Contrary to the second order case, biharmonic heat kernels are sign-changing. A deep knowledge of their behaviour may however allow to prove positivity results for solutions of the Cauchy problem. We establish further properties of these kernels, we prove some Lorch-Szegö-type monotonicity results and we give some hints on how to obtain similar results for higher polyharmonic parabolic problems.
متن کاملNUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4
In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008